organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 2-hydroxy-3-nitrobenzoate

Yan-Zhu Liu,* Yong-Xiu Li, Ling Zhang and Xia Li

Department of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China

Correspondence e-mail: liuyanzhu2001@yahoo.com.cn

Received 22 May 2009; accepted 24 June 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.055; wR factor = 0.110; data-to-parameter ratio = 12.8.

The title compound, C₈H₇NO₅, assumes an approximately planar molecular structure with an intramolecular $O-H \cdots O$ hydrogen bond between the hydroxy and carboxylate groups. Weak intermolecular $C-H \cdots O$ hydrogen bonding is present in the crystal structure.

Related literature

For the properties of 2-hydroxybenzoyl compounds, see: Konopacka et al. (2005); Sonar et al. (2007); Willian & Layne (2001); Huang et al. (1996). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

C₈H₇NO₅ $M_r = 197.15$ Monoclinic, $P2_1/c$ a = 7.6120 (10) Åb = 11.716 (2) Å c = 9.656 (2) Å $\beta = 101.830 \ (10)^{\circ}$

V = 842.9 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.13 \text{ mm}^ T=291~{\rm K}$ $0.30 \times 0.20 \times 0.20 \mbox{ mm}$

Data collection

Bruker SMART CCD area-detector 1473 independent reflections diffractometer 965 reflections with $I > 2\sigma(I)$ Absorption correction: none $R_{\rm int} = 0.046$ 4045 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	129 parameters
$wR(F^2) = 0.110$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
1655 reflections	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots O4$	0.96	1.70	2.554 (2)	146
$C4 - H4A \cdots O2^{i}$	0.93	2.57	3.321 (3)	138
$C6-H6A\cdots O4^{ii}$	0.93	2.49	3.336 (3)	151
$C8-H8B\cdotsO1^{ii}$	0.96	2.59	3.305 (3)	131

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z - \frac{1}{2}$; (ii) -x + 2, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work is supported by the Program for Innovative Research Team of Nanchang University, the Open Foundation of CAS Key Laboratory of Organic Solids and the Natural Science Foundation of Education Department of Jiangxi Province, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2532).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Huang, K.-S., Britton, D. & Etter, M. C. (1996). Acta Cryst. C52, 2868-2871.
- Konopacka, A., Filarowski, A. & Pawelka, Z. (2005). J. Solution Chem. 34, 929-945.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sonar, V. N., Venkatraj, M., Parkin, S. & Crooks, P. A. (2007). Acta Cryst. E63, 03227
- Willian, L. M. & Layne, A. M. (2001). Tetrahedron, 57, 2957-2964.

supplementary materials

Acta Cryst. (2009). E65, o1716 [doi:10.1107/S1600536809024301]

Methyl 2-hydroxy-3-nitrobenzoate

Y.-Z. Liu, Y.-X. Li, L. Zhang and X. Li

Comment

Methyl salicylate and its analogues are useful intermediates in organic synthesis and show potential applications for functional materials and drugs (Konopacka *et al.*, 2005; Sonar *et al.*, 2007; Willian & Layne, 2001; Huang *et al.*, 1996). In this paper, the structure of the title compound is reported.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen *et al.*, 1987). There is an intramolecular hydrogen bond between the hydroxy group and the carboxyl group, and the whole molecule is planar except for the methyl H atoms. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonding (Table 1).

Experimental

The methyl salicylate (3 ml) and $Fe(NO_3)_3.9(H_2O)$ (3 g) were dissolved in ethyl acetate (50 ml), and the solution was refluxed for 1 h. The resulting mixture was cooled and filtered. The yellow single crystals were obtained from the filtrate by slowly evaporating ethyl acetate.

Refinement

H atoms were located geometrically and treated as riding atoms with C—H = 0.93 (aromatic), 0.96 Å (methyl) and O—H = 0.96 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms and $1.5U_{eq}(C,O)$ for the others.

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 30% probability level. The dashed line indicates hydrogen bonding.

Methyl 2-hydroxy-3-nitrobenzoate

Crystal data $C_8H_7NO_5$ $M_r = 197.15$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.6120 (10) Å

 $F_{000} = 408$ $D_x = 1.554 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1211 reflections $\theta = 2.7-22.6^{\circ}$

supplementary materials

b = 11.716 (2) Å	$\mu = 0.13 \text{ mm}^{-1}$
c = 9.656 (2) Å	T = 291 K
$\beta = 101.830 \ (10)^{\circ}$	Block, yellow
V = 842.9 (3) Å ³	$0.30 \times 0.20 \times 0.20$ mm
Z = 4	

Data collection

965 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.046$
$\theta_{\text{max}} = 26.0^{\circ}$
$\theta_{\min} = 2.7^{\circ}$
$h = -8 \rightarrow 9$
$k = -13 \rightarrow 13$
$l = -11 \rightarrow 6$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.055$	$w = 1/[\sigma^2(F_o^2) + (0.02P)^2 + 0.55P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.110$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
1655 reflections	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
129 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	

Extinction coefficient: 0.010 (3)

Secondary atom site location: difference Fourier map

Special details

methods

Experimental. ¹H-NMR (CDCl₃, 500 MHz): δ4.03 (s, 3 H), 7.20(s, 1 H), 8.15-8.19 (d, 2 H), 12.02 (s, 1 H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C3	0.6545 (3)	0.9162 (2)	-0.0890 (2)	0.0465 (6)
C4	0.6080 (3)	0.8030 (2)	-0.1125 (3)	0.0541 (7)
H4A	0.5248	0.7822	-0.1931	0.065*
C5	0.6836 (4)	0.7212 (2)	-0.0176 (3)	0.0581 (8)
H5A	0.6523	0.6448	-0.0337	0.070*
C6	0.8059 (3)	0.7525 (2)	0.1011 (3)	0.0504 (7)
H6A	0.8577	0.6966	0.1649	0.060*
C1	0.8541 (3)	0.8654 (2)	0.1281 (2)	0.0433 (6)
C2	0.7769 (3)	0.9507 (2)	0.0320 (2)	0.0449 (6)
C7	0.9867 (3)	0.8997 (2)	0.2543 (3)	0.0499 (7)
C8	1.1859 (4)	0.8424 (2)	0.4632 (3)	0.0654 (9)
H8C	1.2856	0.8819	0.4384	0.098*
H8B	1.2277	0.7740	0.5140	0.098*
H8A	1.1297	0.8907	0.5217	0.098*
N1	0.5694 (4)	0.9981 (2)	-0.1954 (3)	0.0726 (8)
O2	0.6026 (3)	1.09798 (19)	-0.1803 (2)	0.0830 (7)
O3	0.4677 (4)	0.96270 (19)	-0.2983 (2)	0.1045 (9)
01	0.8187 (3)	1.06068 (13)	0.05425 (19)	0.0651 (6)
H1A	0.9073	1.0676	0.1402	0.098*
O4	1.0286 (3)	0.99828 (15)	0.2831 (2)	0.0692 (6)
O5	1.0566 (2)	0.81316 (14)	0.33514 (18)	0.0564 (5)

	1	. , .	• 1 . • .	. 1. 1		(82)
Fractional atomic co	oordinates and	isotropic or	equivalent isot	ropic displac	cement parameters	(A^{-})

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C3	0.0456 (15)	0.0474 (15)	0.0452 (15)	0.0024 (12)	0.0064 (12)	0.0044 (12)
C4	0.0541 (17)	0.0566 (18)	0.0479 (16)	-0.0064 (14)	0.0016 (13)	-0.0055 (13)
C5	0.0686 (19)	0.0408 (15)	0.0602 (17)	-0.0089 (14)	0.0021 (15)	-0.0062 (13)
C6	0.0570 (17)	0.0389 (14)	0.0523 (16)	0.0003 (12)	0.0043 (13)	0.0024 (12)
C1	0.0445 (14)	0.0380 (14)	0.0454 (14)	0.0009 (11)	0.0047 (11)	-0.0006 (11)
C2	0.0461 (15)	0.0383 (14)	0.0490 (15)	-0.0006 (12)	0.0064 (12)	-0.0027 (12)
C7	0.0510 (16)	0.0417 (15)	0.0537 (16)	0.0010 (13)	0.0032 (12)	0.0006 (13)
C8	0.0645 (19)	0.0666 (18)	0.0539 (17)	-0.0020 (15)	-0.0143 (14)	0.0017 (14)
N1	0.088 (2)	0.0614 (17)	0.0573 (16)	0.0015 (15)	-0.0116 (14)	0.0065 (14)
O2	0.1039 (18)	0.0617 (14)	0.0704 (14)	0.0079 (13)	-0.0123 (12)	0.0118 (11)
O3	0.130 (2)	0.0832 (17)	0.0741 (16)	-0.0058 (15)	-0.0405 (15)	0.0098 (13)
O1	0.0776 (14)	0.0355 (10)	0.0703 (13)	-0.0033 (9)	-0.0130 (10)	0.0026 (9)
O4	0.0805 (14)	0.0404 (11)	0.0720 (13)	-0.0043 (10)	-0.0188 (11)	-0.0055 (9)
O5	0.0603 (12)	0.0469 (11)	0.0532 (11)	-0.0018 (9)	-0.0089 (9)	0.0030 (9)

Geometric parameters (Å, °)

C3—C4	1.380 (3)	C2—O1	1.334 (3)
C3—C2	1.396 (3)	C7—O4	1.215 (3)
C3—N1	1.457 (3)	C7—O5	1.323 (3)

supplementary materials

C4—C5	1.369 (3)	C8—O5	1.455 (3)
C4—H4A	0.9300	C8—H8C	0.9600
C5—C6	1.371 (3)	C8—H8B	0.9600
С5—Н5А	0.9300	C8—H8A	0.9600
C6—C1	1.383 (3)	N1—O2	1.200 (3)
С6—Н6А	0.9300	N1—O3	1.201 (3)
C1—C2	1.408 (3)	O1—H1A	0.9600
C1—C7	1.470 (3)		
C4—C3—C2	121.4 (2)	O1—C2—C1	121.7 (2)
C4—C3—N1	117.0 (2)	C3—C2—C1	117.6 (2)
C2-C3-N1	121.6 (2)	O4—C7—O5	122.6 (2)
C5—C4—C3	120.3 (2)	O4—C7—C1	123.6 (2)
С5—С4—Н4А	119.8	O5—C7—C1	113.8 (2)
С3—С4—Н4А	119.8	O5—C8—H8C	109.5
C4—C5—C6	119.5 (2)	O5—C8—H8B	109.5
С4—С5—Н5А	120.3	H8C—C8—H8B	109.5
С6—С5—Н5А	120.3	O5—C8—H8A	109.5
C5—C6—C1	121.5 (2)	H8C—C8—H8A	109.5
С5—С6—Н6А	119.2	H8B—C8—H8A	109.5
C1—C6—H6A	119.2	O2—N1—O3	121.4 (2)
C6—C1—C2	119.7 (2)	O2—N1—C3	120.2 (2)
C6—C1—C7	121.9 (2)	O3—N1—C3	118.3 (3)
C2—C1—C7	118.4 (2)	C2—O1—H1A	108.9
O1—C2—C3	120.7 (2)	C7—O5—C8	116.16 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
O1—H1A…O4	0.96	1.70	2.554 (2)	146	
C4—H4A···O2 ⁱ	0.93	2.57	3.321 (3)	138	
C6—H6A···O4 ⁱⁱ	0.93	2.49	3.336 (3)	151	
C8—H8B···O1 ⁱⁱ	0.96	2.59	3.305 (3)	131	
Symmetry codes: (i) $-x+1$, $y-1/2$, $-z-1/2$; (ii) $-x+2$, $y-1/2$, $-z+1/2$.					

Fig. 1